4. Dynamic Simulation of Models

This notebook example provides a basic demonstration on how to dynamically simulate models.

import mass.example_data

model = mass.example_data.create_example_model("Phosphate_Trafficking")
Set parameter Username

4.1. Creating a Simulation

The Simulation object manages all aspects related to simulating one or more model. This includes interfacing with the RoadRunner object from the libRoadRunner package, which is utilized for JIT compilation of the model, integration of model ODEs, and returning simulation output.

from mass import Simulation

4.1.1. Loading a model

A Simulation object is initialized by providing a MassModel to be loaded into the underlying RoadRunner object. The provided MassModel is treated as the reference_model of the Simulation.

RoadRunner is designed to simulate models in SBML format. Therefore, models must be SBML compliant to be loaded into the RoadRunner instance.

sim = Simulation(reference_model=model, verbose=True)
Successfully loaded MassModel 'Phosphate_Trafficking' into RoadRunner.

The reference MassModel is accessed using the reference_model attribute.

Memory address0x07fa440bfa550
Stoichiometric Matrix 5x6
Matrix Rank 4
Number of metabolites 5
Initial conditions defined 5/5
Number of reactions 6
Number of genes 0
Number of enzyme modules 0
Number of groups 0
Objective expression 0
Compartments compartment

The underlying RoadRunner instance can be accessed using the roadrunner attribute:

<roadrunner.RoadRunner() { this = 0x7fa3fa62e830 }>

Upon loading a model into a Simulation, the numerical values for species’ initial conditions and reaction parameters are extracted. Dictionaries containing values are retrieved using the get_model_simulation_values() method.

initial_conditions, parameters = sim.get_model_simulation_values(model)
for metabolite, initial_condition in initial_conditions.items():
    print("{0}: {1}".format(metabolite, initial_condition))
adp_c: 0.2
atp_c: 1.7
amp_c: 0.2
B: 2
BP: 8

4.2. Running Dynamic Simulations

4.2.1. Simulating a model

Once a model has been loaded, it can be simulated using the Simulation.simulate() method. The simulate() method requires a model identifier or MassModel object of a loaded model and a tuple that contains the initial and final time points.

# Simulate the model from 0 to 100 time units
solutions = sim.simulate(model, time=(0, 100))
(<MassSolution Phosphate_Trafficking_ConcSols at 0x7fa460716a40>,
 <MassSolution Phosphate_Trafficking_FluxSols at 0x7fa410ad4f90>)

After a model has been simulated, the concentration and flux solutions are returned in two specialized dictionaries known as MassSolution objects.

conc_sol, flux_sol = solutions

# List the first 5 points of concentration solutions
for metabolite, solution in conc_sol.items():
    print("{0}: {1}".format(metabolite, solution[:5]))
adp_c: [0.2        0.20020374 0.20040726 0.20095514 0.2015016 ]
atp_c: [1.7        1.69982168 1.69964357 1.69916416 1.69868608]
amp_c: [0.2        0.19997458 0.19994916 0.19988069 0.1998123 ]
B: [2.         1.99984758 1.99969535 1.99928569 1.99887727]
BP: [8.         8.00015242 8.00030465 8.00071431 8.00112273]

By default, solutions are returned as numpy.ndarrays. To return interpolating functions instead, the interpolate argument is set as True.

conc_sol, flux_sol = sim.simulate(model, time=(0, 100), interpolate=True)

for metabolite, solution in conc_sol.items():
    print("{0}: {1}".format(metabolite, solution))
adp_c: <scipy.interpolate._interpolate.interp1d object at 0x7fa410ae60e0>
atp_c: <scipy.interpolate._interpolate.interp1d object at 0x7fa46072c5e0>
amp_c: <scipy.interpolate._interpolate.interp1d object at 0x7fa46072c4f0>
B: <scipy.interpolate._interpolate.interp1d object at 0x7fa410ae2f40>
BP: <scipy.interpolate._interpolate.interp1d object at 0x7fa410ae6180>

4.2.2. Setting integration options

Although the integrator options are set to accomadate a variety of models, there are circumestances in which the integrator options need to be changed. The underlying integrator can be accessed using the integrator property:

< roadrunner.Integrator() >
  name: cvode
      relative_tolerance: 1e-06
      absolute_tolerance: 1e-12
                   stiff: true
       maximum_bdf_order: 5
     maximum_adams_order: 12
       maximum_num_steps: 20000
       maximum_time_step: 0
       minimum_time_step: 0
       initial_time_step: 0
          multiple_steps: false
      variable_step_size: true
         max_output_rows: 100000

Each setting comes with a brief description that can be viewed:

(bool) Enabling this setting will allow the integrator to adapt the size of each time step. This will result in a non-uniform time column.  The number of steps or points will be ignored, and the max number of output rows will be used instead.

For example, to change the integration options so a uniform time vector is returned instead of one with a variable step size:

sim.integrator.variable_step_size = False

# Simulate the model from 0 to 100 time units
# with output returned at evenly spaced time points
conc_sol, flux_sol = sim.simulate(model, time=(0, 100))

# Print the time vector
[ 0.  2.  4.  6.  8. 10. 12. 14. 16. 18.]

When encountering exceptions from the integrator, libRoadRunner recommends specifying an initial time step and tighter absolute and relative tolerances.

See the libRoadRunner documentation about the roadrunner.Integrator class for more information on the integrator.

4.2.3. Simulation results and the MassSolution object

For every model simulated, two MassSolution objects are returned per model. MassSolution objects are always outputted as pairs, with one MassSolution object containing the solutions for metabolite concentrations, and the other containing the solutions for reaction fluxes.

# Simulate the model from 0 to 100 time units
sim = Simulation(model)
conc_sol, flux_sol = sim.simulate(model, time=(0, 100))

A MassSolution for a successful simulation contains string identifiers of objects and their corresponding solutions. Because MassSolution objects are specialized dictionaries, solutions can be retrieved using the object identifier as dict keys. For example, to access the solution for “atp_c”:

# Print first 10 solution values for ATP
array([1.7       , 1.69982168, 1.69964357, 1.69916416, 1.69868608,
       1.69820944, 1.69773427, 1.69673394, 1.69460788, 1.6925119 ])

If care is taken when assigning object identifiers (e.g., does not start with a number, does not contain certain characters such as “-”), it is possible to access solutions inside of a MassSolution as if the corresponding keys were attributes.

# Print first 10 solution values for ATP
array([1.7       , 1.69982168, 1.69964357, 1.69916416, 1.69868608,
       1.69820944, 1.69773427, 1.69673394, 1.69460788, 1.6925119 ])

The time points returned by the integrator are accessible using the MassSolution.time attribute:

# Print the first 10 time points
[0.00000000e+00 8.47847116e-08 1.69569423e-07 3.98257356e-07
 6.26945288e-07 8.55633221e-07 1.08432115e-06 1.56811392e-06
 2.60709564e-06 3.64607737e-06]

The solutions contained within the MassSolution can be obtained as a pandas.DataFrame using the to_frame() method.

adp_c atp_c amp_c B BP
0.000000e+00 0.200000 1.700000 0.200000 2.000000 8.000000
8.478471e-08 0.200204 1.699822 0.199975 1.999848 8.000152
1.695694e-07 0.200407 1.699644 0.199949 1.999695 8.000305
3.982574e-07 0.200955 1.699164 0.199881 1.999286 8.000714
6.269453e-07 0.201502 1.698686 0.199812 1.998877 8.001123
... ... ... ... ... ...
3.012599e+01 0.399998 1.599991 0.099999 2.000000 8.000000
3.828512e+01 0.399998 1.599992 0.100000 2.000000 8.000000
5.517474e+01 0.399998 1.599994 0.100000 2.000000 8.000000
8.169531e+01 0.399999 1.599996 0.100000 2.000000 8.000000
1.000000e+02 0.399999 1.599997 0.100000 2.000000 8.000000

171 rows × 5 columns

Solutions also can be viewed visually using the view_time_profile() method. Note that this requires matplotlib to be installed in the environment. See Plotting and Visualization for more information.


4.2.4. Aggregate variables and solutions

Often, it is desirable to look at mathematical combinations of metabolites concentrations or reaction fluxes. To create an aggregate variable, the MassSolution.make_aggregate_solution() method is used. To use the method, three inputs are required:

  1. A unique ID for the aggregate variable.

  2. The mathematical equation for the aggregate variable given as a str.

  3. A list of the MassSolution keys representing variables used in the equation.

For example, to make the Adenylate Energy Charge [Atk68], the occupancy and capacity pools are first defined:

occupancy = conc_sol.make_aggregate_solution(
    equation="(atp_c + 0.5 * adp_c)",
    variables=["atp_c", "adp_c"])
['adp_c', 'atp_c', 'amp_c', 'B', 'BP', 'occupancy']

The aggregate variables are returned as a dict, which can be added to the MassSolution object. Alternatively, the update flag can be set as True to automatically add an aggregate variable to the solution after creation.

capacity = conc_sol.make_aggregate_solution(
    equation="(atp_c + adp_c + amp_c)",
    variables=["atp_c", "adp_c", "amp_c"],
['adp_c', 'atp_c', 'amp_c', 'B', 'BP', 'occupancy', 'capacity']

Aggregate variables formed from other aggregate variables also can be created using the make_aggregate_solution() method as long as the aggregate variables have been added to the MassSolution. To make the energy charge from the occupancy and capacity aggregate variables:

ec = conc_sol.make_aggregate_solution(
    equation="occupancy / capacity",
    variables=["occupancy", "capacity"],

If care is taken when assigning aggregate variable identifiers, it is possible to access aggregate variable solutions inside of a MassSolution, as if aggregate variable keys were attributes.

# Print first 10 solution points for the energy charge
array([0.85714286, 0.85710645, 0.8570701 , 0.85697226, 0.85687471,
       0.85677749, 0.85668059, 0.85647669, 0.85604374, 0.85561747])

4.3. Perturbing a Model

To simulate various disturbances in the system, the perturbations argument of the simulate() method can be used. There are several types of perturbations that can be implemented for a given simulation as long as they adhere to the following guidelines:

  1. Perturbations are provided to the method as a dict with dictionary keys that correspond to variables to be changed. Dictionary values are the new numerical values or mathematical expressions as strings that indicate how the value is to be changed.

  2. A formula for the perturbation can be provided as a str as long as the formula string can be sympified via the sympy.sympify() function. The formula can have one variable that is identical to the corresponding dict key.

  3. Boundary conditions can be set as a function of time. The above rules still apply, but allow for the time “t”, as a second variable.

Some examples are demonstrated below.

A simulation without perturbations:

conc_sol, flux_sol = sim.simulate(model, time=(0, 1000))

Perturbing the initial concentration of ATP from 1.6 to 2.5:

conc_sol, flux_sol = sim.simulate(
    model, time=(0, 1000), perturbations={"atp_c": 2.5})

Increasing the rate constant of ATP use by 50%:

conc_sol, flux_sol = sim.simulate(
    model, time=(0, 1000), perturbations={"kf_use": "kf_use * 1.5"})

4.4. Determining Steady State

The steady state for models can be found using the Simulation.find_steady_state() method. This method requires a model identifier or a MassModel object and a string thats indicates a strategy for finding the steady state. For example, to find the steady state by simulating the model for a long time:

sim = Simulation(reference_model=model)

conc_sol, flux_sol = sim.find_steady_state(model, strategy="simulate")
for metabolite, solution in conc_sol.items():
    print("{0}: {1}".format(metabolite, solution))
adp_c: 0.3999999999999983
atp_c: 1.5999999999999932
amp_c: 0.09999999999999959
B: 1.999999999999997
BP: 7.999999999999988

Alternatively, a steady state solver can be utilized with a root-finding algorithm to determine the steady state. For example, to use a non-linear equation solver that implements a global Newton method with adaptive damping strategies (NLEQ2) or a line-search method:

conc_sol, flux_sol = sim.find_steady_state(model, strategy="newton_linesearch")
for metabolite, solution in conc_sol.items():
    print("{0}: {1}".format(metabolite, solution))
adp_c: 0.39999920693137425
atp_c: 1.599996808967697
amp_c: 0.09999980294303153
B: 2.0000000187666185
BP: 7.999999981233392

Setting update_values=True updates the model initial conditions and fluxes with the steady state solution:

conc_sol, flux_sol = sim.find_steady_state(model, strategy="newton_linesearch",
model.initial_conditions  # Same object as reference model in Simulation
{<MassMetabolite adp_c at 0x7fa4606bf730>: 0.39999920693137425,
 <MassMetabolite atp_c at 0x7fa4606bf6a0>: 1.599996808967697,
 <MassMetabolite amp_c at 0x7fa4606bf700>: 0.09999980294303153,
 <MassMetabolite B at 0x7fa4606bf790>: 2.0000000187666185,
 <MassMetabolite BP at 0x7fa4606bf7c0>: 7.999999981233392}

The find_steady_state() method also allows for perturbations to be made before determining a steady state solution:

conc_sol, flux_sol = sim.find_steady_state(
    model, strategy="simulate", perturbations={"kf_use": "kf_use * 1.5"})

for metabolite, solution in conc_sol.items():
    print("{0}: {1}".format(metabolite, solution))
adp_c: 0.26666666666666217
atp_c: 0.7111111111110989
amp_c: 0.09999999999999833
B: 2.72727272727273
BP: 7.272727272727279

4.4.1. The steady state solver

Although the steady state solver options are set to accommodate a variety of models, there are circumstances in which the steady state solver options need to be changed. The underlying solver can be accessed using the steady_state_solver property:

< roadrunner.SteadyStateSolver() >
  name: newton_linesearch
    auto_moiety_analysis: false
     allow_presimulation: true
      presimulation_time: 5
     presimulation_times: [0.1, 1, 10, 100, 1000, 10000]
    presimulation_maximum_steps: 500
            allow_approx: true
        approx_tolerance: 1e-06
    approx_maximum_steps: 10000
             approx_time: 10000
           num_max_iters: 200
          allow_negative: false
             print_level: 0
                eta_form: 'eta_choice1'
           no_init_setup: false
       no_res_monitoring: false
         max_setup_calls: 10
      max_subsetup_calls: 5
      eta_constant_value: 0.1
         eta_param_gamma: 0
         eta_param_alpha: 0
             res_mon_min: 1e-05
             res_mon_max: 0.9
    res_mon_constant_value: 0.9
              no_min_eps: false
         max_newton_step: 0
          max_beta_fails: 10
           func_norm_tol: 0
         scaled_step_tol: 0
            rel_err_func: 0

Analogous to the integrator, each setting for the steady state solver comes with a brief description that can be viewed:

Maximum number of steps that can be taken for steady state approximation routine (int).

For example, to change the solver options to allow for a larger maximum number of iterations:

sim.steady_state_solver.approx_maximum_steps = 15000

For more information on steady state solver options, see the libRoadRunner documentation about the roadrunner.SteadyStateSolver class.

4.5. Simulating Multiple Models

Multiple models can be added to a Simulation object in order to perform simulations on several models. Below, a simple example utilizing a copy of the model with a smaller total buffer concentration is made for demonstration purposes:

model = mass.example_data.create_example_model("Phosphate_Trafficking")
sim = Simulation(model)

# Make a modified model
modified = model.copy()
modified.id = "Phosphate_Trafficking_Modified"
modified.update_initial_conditions({"BP": 4, "B": 1})

To add an additional model to an existing Simulation object, three criteria must be met:

  1. The model must have equivalent ODEs to the reference_model used in creating the Simulation.

  2. All models in the Simulation must have unique identifiers.

  3. Numerical values necessary for simulation must be already defined for a model.

Use the MassModel.has_equivalent_odes() method to check if ODEs are equivalent.

sim.reference_model.has_equivalent_odes(modified, verbose=True)

Use the Simulation.add_models() method to load the additional model.

sim.add_models(models=[modified], verbose=True)
Successfully loaded MassModel 'Phosphate_Trafficking_Modified'.

Use the simulate() method to simulate multiple models by providing a list of model objects or their identifiers.

conc_sol_list, flux_sol_list = sim.simulate(
    models=[model, modified], time=(0, 100))

After simulating multiple models, the MassSolution objects are returned in two cobra.DictList objects. The first DictList contains the concentrations solutions, and the second DictList contains the flux solutions for simulated models.

[<MassSolution Phosphate_Trafficking_ConcSols at 0x7fa400e647c0>,
 <MassSolution Phosphate_Trafficking_Modified_ConcSols at 0x7fa46072c360>]

The get_by_id() method can be used to access a specific solution:

conc_sol_list.get_by_id("_".join((modified.id, "ConcSols")))
<MassSolution Phosphate_Trafficking_Modified_ConcSols at 0x7fa46072c360>

For additional information on simulating multiple models, see Simulating an Ensemble of Models.